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Several methods based on matched eigenfunction expansws are developed to study 
the diffraction of a linear, steady train of waves in finite water depth by a combination 
of straight depth discontinuities and colinear vortex sheets, where the vortex sheets 
represent a first approximation to a thin shear layer between regions of dissimilar 
ambient current velocity. Special attention is paid to the caae of a current flowing 
along a submerged trench, and predictions of reflection and transmission are seen to 
be highly sensitive to the magnitude and direction of the ambient current. 

1. Introduction 
The assumption that vertical shear layers of small thickness may be approximated 

at leading order by vertical vortex sheets leads to a major simplification in the study 
of water waves diffracted by strong shear in an ambient current. Using this 
ttssumption, the wave motion in each region of constant current speed (with the 
regions joined at vortex sheets) may be assumed to be irrotational, and therefore 
the diffraction problem may be formulated using potential theory. Evans (1975) 
formulated the appropriate boundary-value problem for a single vortex sheet in water 
of arbitrary depth, and obtained solutions for deep water using a Galerkin 
approximation to the resulting integral equation. Smith (1983) has extended Evans’ 
work to the case of a current jet bounded by two vortex sheets, and developed a 
reasonably successful plane-wave approximation using only progressive wave modes 
and a depth-averaging procedure at the vortex sheet which incorporates the 
mismatch between the fluid velocities induced by the propagating wave modes. Smith 
(1987) has further extended his depth-averaging procedure to  cover the cam of a 
concurrent shelf and vortex sheet, and has also extended Miles’ (1967) variational 
scattering approximation for a shelf to include the presence of a vortex sheet. 

The same problem posed in shallow-water theory has also drawn some attention. 
Mollo-Christensen (1978) considered the possibility of resonant over-reflection at a 
vortex sheet, using a formulation given by Miles (1957) for the corresponding 
acoustical problem. Mei & Lo (1984, see corrections, 1986) considered the current-jet 
problem. Kirby (1986) has shown that the appropriate matching conditions between 
regions in shallow-water theory are derivable by a depth average of Evans’ (1975) 
conditions, and essentially guarantee that volume flux normal to the displaced vortex 
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FIGURE 1.  Physical domain for the case of an asymmetric trench of width L. Incident waves in 

region 1 .  (a) elevation; ( b )  plan. 

sheet is conserved. Kirby then formulated the shallow-water problem for coincident 
vortex sheet and sudden depth change; the formulation is analogous to Lamb’s 
(1945) treatment of a step and is likely to be the correct matching condition to the 
same level of accuracy as Lamb’s. 

Vortex sheets disturbed by wave motions are likely to be unstable (Miles 1958), 
and thus it is not known how much physical relevance to attach to the results 
surveyed above. For this reason, and because of its engineering relevance, we choose 
here to study the case of a uniform current flowing along a trench, bounded by 
shallower regions which may be expected to have currents of lower or zero velocity. 
This case may serve as a first approximation to tidal flow along a natural or dredged 
channel. Further, the presence of rigid surfaces bounding a portion of the isolated 
large current may serve to guide the current and stabilize the position of the current 
boundaries in a practical sense. 

The theory of wave diffraction at depth discontinuities in a stationary domain is 
well developed; a review of results that are relevant here may be found in Kirby & 
Dalrymple (1983, hereinafter referred to as KD1) and in Smith (1987). The purpose 
of this study is to extend the results of KD1 to include the effects of currents flowing 
parallel to the trench boundary. A schematic of the general problem is shown in figure 
1. The problem is formulated for intermediate water depth in terms of the discrete 
eigenfunction expansion for each region of uniform depth and current. We then solve 
the full linear problem, truncated to a finite number of non-propagating wave modes, 
using Takano’s (1960) method as in KD1. This method, denoted by EFEM below, 
has been verified in comparison with several computational techniques and in 
comparison with laboratory data by KD1. Results of a boundary-integral (BIEM) 
method are included for verification, and numerical results are discussed in $4. In 
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$5 we formulate several approximate solutions. A plane-wave solution for propa- 
gating modes is developed using the depth-averaging scheme for the full problem. 
Deep-water limits are compared with Smith’s (1983) results and are shown to not 
behave aa well in strong adverse currents, when each solution is compared with Evans’ 
(1975) integral-equation solution. The plane-wave scheme is then modified in the 
intermediate-depth formulation to conform to the depth-averaging approach applied 
by Smith (1983,1987) in his action-based model. Finally, a variational approximation 
following Miles (1967) is constructed and is seen to perform better than the other 
approximations. In  96 results in the shallow-water limit are shown to be equivalent 
to the results of Kirby (1986), and we investigate the effect of varying wave conditions 
and geometry on the reflection process. 

2. The Boundary-value problem 
We consider the diffraction of monochromatic, small-amplitude waves by abrupt 

changes in depth and ambient current. The domain is allowed to vary in the 
x-direction and is uniform in the y-direction, with the ambient current oriented in 
the y-direction. We further assume that depth variations are limited to step 
discontinuities, and that current variations are limited to discrete vortex sheets 
coinciding with the depth variations, as shown in figure 1. These restrictions allow 
the fluid domain to be considered as a set of regions, each with constant parameters. 
The flow in each region is considered to be inviscid and irrotational, and each region’s 
velocity potential $g ( i  = 1 , 2 , 3 )  may then be expressed in terms of a complete set 
of eigenfunctions. 

The problem in each region is then given by 

We assume that the wave motion in all regions is driven by a wave that is incident 
from z = - co in region 1, propagating at  angle 8, to the x-direction. We then have 

(2.5) m = k, sine, = constant for all i 

owing to the requirement of conservation of wave crests in the y-direction, where k, 
is the real wavenumber in region 1 as defined below. 

At the discontinuities x = xt5 between regions i and j, the appropriate boundary 
conditions may be obtained from Evans (1975). Omitting the details, which may be 
found in that paper, we impose continuity of normal flow following the vortex sheet 

(2 .6a)  

(2.6b) 
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and continuity of pressure at x,, 
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Finally, we set a$,/ax = 0 on any submerged vertical boundary. 
Imposing the conditions of the incident wave on the problem, we may write 

3 (2.8) 

(2.9) 

where w is the absolute wave frequency in stationary coordinates. The boundary- 
value problem for $, in each region becomes 

i( my-wt) $&, Y ,  2, t )  = $&, 2) e 

f,(x, y ,  t )  = q,(x)  ei(my-wt), 

(2.10) 

g--+cr;q5, w t  = 0, z = 0, (2.11) 
a Z  

-- - 0, z = -h,, (2.12) 
a Z  

a, = w-&& is the wave frequency relative to the ambient current. The 
.e; conditions reduce to 

(2.13) 

(2.15) 

where f,, = cash k,(h, + 4, (2.16) 

f&) = cos(q.(h,+z)); n =  1, a * - ,  00, (2.17) 

and where k, is the one real root of 

cri = gk, tanh k, h, (2.18 a) 

and K,, are the infinity of real roots of 

gi = -gK,, n tanK,, n hi, (2.18 b)  

which are ordered from smallest to largest. The set of functions {ft,n, n = 0, 1, ...} 
form a complete orthogonal basis for region i. The forms of solutions $,, can vary 
significantly depending on the values of ut and k,. 
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where I ,  = (k!-m*)t, A{,n = (@,,+m2))f (2.20) 
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and where the f indicates the sum over left- and right-propagating (or decaying) 
components. The complete solution consists of two freely propagating waves and a 
double infinity of evanescent modes. 

Case 2: ut > 0, k# = m 
In this case the freely propagating portion of (2.19) is reduced to 

(2.21) 

with the evanescent modes unaltered. 

Case 3: u, > 0, k, < m 

Then 

(2.23) with 

Case 4:  u, = 0 
This represents a special case where the wave phase speed in the y-direction 

coincides with the ambient-current speed V, in region i. Then k, = Kt, , = 0 in (2.18). 
From (2.10)-(2.12) we find that 

$, = A t  efmz, (2.24) 

while (2.13) requires A-  a$ - 0; x = X#*, (2.25) 

which gives A t  = A,. In  a semi-infinite region i, we then obtain Af = A; = 0 owing 
to boundedness conditions; no wave-induced motion of any sort can occur in 
region i. In  a finite region i ,  (2.3) implies 7, = 0.  For 0 < xt < L and (2.25) applied 
at 0 and L, we get 

m(Af - A;) = m(Af emL - A; e-mL) = 0, (2.26) 

which again requires Af = A; = 0. Thus, any region of non-vanishing width in which 
cr# = 0 represents a totally impenetrable barrier to wave motion incident on it. 

ax 

Case 5 :  ug < 0 
The possible cases for m{ < 0 mimic the set of three cams with cr, > 0, with the 

exception that the negative branch of roots for the Z{ and A#,, must be taken. For 
crt < 0 and lkrl > m, the situation corresponding to over-reflection can occur. This 
theoretically predicted phenomenon has been discussed by Mollo-Christensen (1978) 
in the context of shallow-water waves. A schematic of the dispersion relation and 
possible resulting flow conditions in region i is given in figure 2. The plot clearly shows 
the tendency for following currents, V, > 0, to drive the relative frequency u# down 
to or beyond the zero value, rendering the region i more reflective, while adverse or 
opposing currents V, < 0 may render highly reflective regions (Case 3) much less 
reflective by shifting them over to Case 1 behaviour. 

We restrict our attention in the following discussion to Case 1 solutions in region 
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FIGURE 2. Possible solution types in region i, depending on magnitude and direction of current 
and value of absolute frequency w .  

1 and consider an incident wave of unit amplitude A: = 1. The amplitude of surface 
displacements for the incident and reflected wave are then 

aI = q-la, cosh k, h,, 

aR = q-lullAJ cosh k, h,. 
(2.27) 

For k, 2 m, transmitted waves may exist in region 3 with surface amplitude 

aT = q-'u,lA:l cosh k, h,. (2.28) 

We define a reflection coefficient K R  and a transmission coefficient KT according to 

or 

a aT - A+(-  u, cosh k, h, KR = = lA~1, 
KT = - u1 coshk,h, * 

Conservation of action in the diffracted-wave field then requires 

as given by KDl and Evans (1975) for deep water. Here 

(2.29) 

(2.30) 
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3. Numerical formulations 
As in KD1, the problem formulated in $2 is first solved following the method 

devised by Takano (1960), which proceeds by constructing an infinite set of algebraic 
equations for the unknown amplitude components. We then consider the extension 
of the boundary-integral-equation method (BIEM) to the case of discrete regions in 
which irrotational flow may be assumed, and in which an ambient steady current 
exists. 

3.1. Solution by matched eigenfunction expansions (EFEM) 
Following KD1, we first truncate the series expansions for the $t to N terms. We 
consider the case of three regions i = 1,2,  3 as in figure 1, where we denote zl, = 0 
and xZ3 = L. In principle, a different number N may be chosen for each region; here, 
N is chosen to be equivalent in all three regions considered. Assuming an incident 
wave of unit amplitude in region 1 and applying the appropriate radiation and 
boundedness conditions leaves a set of (4N+ 4) unknowns A;, B:, A; ,  B: n, 
A,+, BC n, n = 1, ..., N atj in KD1. We then employ the matching conditions on 
a$,/az and orthogonality to obtain 

where we have assumed h, 2 (hl, h,),, for simplicity. We then employ the condition 
on continuity of pressure to obtain 

“1 J“_,, +,(O, 4 f 1 ,  n(4 dz = “, J“ +2(% dfl, n ( 4  dz (n = 0, ..*? N ) ,  (3 .24  

g3J $ 3 ( G  4 f 3 ,  n ( 4  dz = “2 j-Oh3+2(L. z ) f , , n ( z )  dz (n = 0, - . . 9  N ) ,  (3.2b) 

-hi 
0 

4 3  

Equations (3.1) and (3.2) give (4N+4) algebraic equations for the unknown ampli- 
tudes, which may be solved as a linear matrix equation after evaluating the required 
integrals. 

3.2. Solution by the boundary-integral-equation method (BIEM) 
In order to verify the eigenfunction expansion method (EFEM), we utilize a hybrid 
boundary-integral-equation method. Following Yeung (1975), we distribute nodal 
points and boundary elements along the boundary of region 2, as shown in figure 3. 
We assume the value $,(zt, zt)  at any nodal point ( x ~ ,  z f )  to be constant over the 
surrounding element. Letting (zg, zl) denote a nodal point located on the boundary 
r of region 2, we may express the solution $e(zt, zi) in terms of the integral over the 
entire boundary as 
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f Region2 

..t 
FIGURE 3. Coordinate system and boundary discretization for BIEM method. 

where in the numerical method the integral becomes a sum over the finite number 
of boundary elements. In  (3.3), a/an denotes outward normal derivative and {t, 7) 
are local coordinates defined in figure 3. The Green function in (3.3) is derived from 
the modified Helmholtz equation (2.10) and is given by 

G(5, 7; zt, = --K0(mr), r = (t2+v2)4 (3.4) 

where KO is the modified Bessel function of the second kind and of order zero. 
Following Yeung (1975) and Liu & Abbaspour (1982), we match the bounded 

domain 2 to the external semi-infinite regions 1 and 3 using the matching conditions 
(2.13). The number of terms in the expansions (2.15) for the exterior regions is then 
equivalent to the number of nodal points distributed over the vertical junction with 
that region. The resulting integrals may be evaluated using the special Gaussian 
quadrature integral (25.4.44) in Abramowitz & Stegun (1965). Applying the condi- 
tions (2.1 1) and (2.12) on the mean water surface and solid bottom and evaluating the 
remaining integrals leads to a linear matrix equation with solution vector containing 
the unknown A;, Bt, n, A:, B, (n = 1, ..., N) and values of #2 at nodal points on 
the surface, bottom and vertical trench walls. 

4. Numerical results 
Since the present formulation is tailored to the intermediate-depth case with 

discrete evanescent mode spectrum, comparison with the previously published 
deep-water results of Evans (1975) or Smith (1983) is difficult. We attempt such a 
comparison in figure 4 for the case of a single vortex sheet, with the conditions 
h, = h, = h,, V, = 0 and V, = V,. We take k, h, = 10 in order to mimic the deep-water 
case and set N =  10. We found that the resulting coefficient matrix becomes 
ill-conditioned for some large negative values of V,/Co; figure 4 presents the 
comparison with Evans' results over the range where solutions were obtained, for 
angles of incidence 8, = 15", 30°, 60" and 75". Here, Co denotes the deep-water wave 

In order to test the correspondence between the EFEM and the BIEM results, we 
next consider the case of a single vortex sheet over a flat bottom in intermediate 
depth. Figure 5 shows predicted transmission coefficient KT as a function of Froude 
number F = V2(gh2)-i characterizing the current. Results for values of k, h, = 0.1 and 
1.0 are shown, for angles of incidence 15", 30°, 60" and 75", and with N = 10. The 

speed (g/kP. 
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FIGURE 4. Comparison of finite-depth (k, h, = 10) results with Evans (1975) deepwater results 

for a single vortex sheet: ---, Evans; -, present results (EF'EM). 
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FIGURE 6. Comparison of EFEM and BIEM results in finite water depth: single vortex sheet over 
a flat bottom: -, EFEM reaults; individual marks indicate BIEM calculations. (a) k,h, = 0.1; 
(a) 1.0. 
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FIGURE 6. Wave transmission over a symmetric trench. h, = h,, V, = V, = 0; h, = 3h,, L = lOh,, 
B = 45O, F = V,/(gh2)i. -, EFEM method; individual points denote BIEM calculations. 

F = O  F = -0.0525 F = 0.0525 

N KR KR 

2 0.93970 0.34200 
4 0.94080 0.33895 
8 0.94109 0.33816 

16 0.94130 0.33757 
32 0.94137 0.33738 
50 0.94139 0.33732 

KR KT 
0.586 16 0.82292 
0.57593 0.81750 
0.57673 0.81694 
0.57794 0.81608 
0.57830 0.81582 
0.57844 0.81572 

KR KT 
0.98951 0.14446 
0.98964 0.14356 
0.98968 0.14331 
0.98970 0.14314 
0.98971 0.14309 
0.98971 0.14307 

TABLE 1 .  Convergence of EFEM results with increasing N :  h,/h, = 3, L/h, = 10, 
k, h, = 0.68034 

BIEM is also applied to this case, with region 2 taken with the left boundary a t  the 
vortex sheet and the right boundary placed several water depths away. Results of 
the BIEM for 8, = 30" and 60' are included and agree well with the EFEM results. 

As a further check of accuracy, we found that wave action was conserved in the 
scattered-wave field up to the limit of precision in the calculations for all results 
employing the EFEM. The BIEM results exhibit some degradation of accuracy in 
this sense (up to x 1 % loss in some cases), with error being reduced with increasing 
number of nodal points, indicating relatively slow convergence of BIEM solutions 
with increasing resolution of the boundary curve. 

We turn now to the case of interest and give results in figure 6 for a symmetric 
trench with h, = 3 4 ,  L = 10h, and 8, = 45'. Results are given for a range of Froude 
numbers -0.07 < F < 0.1, where F characterizes the current in the trench. The effect 
of even small following or adverse currents on the transmission process is clearly 
apparent. As expected, adverse currents render the trench less reflective and following 
currents increase reflection, owing to the shift of behaviour of the motion in region 
2 over the range of Cases 1-3, as described in $2. 
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FIQWRE 7. Wave transmission over an asymmetric trench. h, = 2h,, V, = V, = 0; h, = 3h,, 
L = lOh,, 8, = 45'. Symbols rn in figure 6. 

Table 1 gives results of convergence tests for the EFEM method for the symmetric- 
trench case. For the fairly small depth change involved here, convergence is seen to 
be rapid except for the opposing-current example. The results for the plots in figures 
6 and 7 were obtained using N = 10, which is sufficiently accurate for graphical 
purposes. 

Figure 6 also shows BIEM results, indicated by isolated points. We found that 
BIEM results were essentially in agreement with EFEM results for configurations 
corresponding to Case 3 behaviour in region 2 (4, varying exponentially across the 
trench). For k, h, greater than the value giving the first point of complete transmission 
KT = 1, BIEM results start to differ from EFEM results. The results in figure 6 are 
based on retaining five non-propagated modes in the BIEM calculations. Experiments 
indicate that increasing the number of boundary elements on the surface and solid 
boundaries (for a fixed number of wave modes) decreases the difference between 
BIEM and EFEM results, indicating that the error is due to resolution of the 
variation in 4, in BIEM; however, convergence to the EFEM result is very slow with 
increasing number of boundary elements, and accurate results were not obtained for 
these regions in the present study. As a result, the BIEM results here serve mainly 
as a check that the EFEM model is correctly formulated. 

Figure 7 presents results for an asymmetric geometry, with h, = 3h,, h, = 2h,, 
L = 10h, and 8, = 4 5 O ,  and with V, = V ,  = 0. The strong dependence of KT on small 
variations in current speed V, along the trench is again apparent. As in the previous 
example, BIEM results are seen to exhibit slow numerical convergence in the range 
of Case 1 behaviour in region 2, and in all cases the EFEM results are to  be regarded 
as the accurate solution. 

5. Approximate solution techniques 
If depth changes between the trench region and external regions are not severe, 

KD1 showed that the reflection and transmission coefficients were reasonably well 
predicted (for the case of no currents) by a plane-wave approximation which neglects 
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the influence of the evanescent modes. We shall now investigate the utility and 
limitations of the plane-wave approximation in the present case. We then go on to 
consider solutions based on an ‘action-based’ model following Smith (1983,1987) and 
a variational formulation following Miles (1967). 

5.1. Plane-wave approximation 
Neglecting evanescent modes in (3.1) and (3.2) reduces the set of equations to 

and 

where 

- ( l - A y )  11 I,, = - ( A t -  12 A,) 122, 
u1 6 2  

(5.1 a) 

Equations (5.1) and (5.2) are solved to obtain 

2a/3(132/I12) e-iza 
A t  = 

(a/3’ + a’/?) cos 1, L - i(aa‘ + /?/3’) sin 2, L ’ 

(5.3) 

( 5 . 4 4  

= (a’p-ap) cos12L+i(au’-~/3’) sin1,L (5.4b) -(ap+a’p) cos12L+i(aa‘+&3’) sin1,L’ 
where 

u2 U g 3  

6 1  6 3  (12 ‘T2 
a = l1q2 -, a’ = 18~25, p = 1, 1 ~ ~ 2 ,  p‘ = I,I,, I ~ ~ - - ,  (5.5) 

Equation (5.4) is equivalent to the result in KD1 (their equation (4.2)) with the 
exception of the appearance of the relative frequencies in the a and /3 values in (5.5). 
For the symmetric case (7, = V3, h, = h,) we have 

a = a‘, p = p .  
The solution may be recast into the form appearing in Mei & Lo (1984) and Kirby 
(1986) by the choice of notation 

giving (5.7) 

The reflection and transmission coefficients are given by 

(5.9a, b)  
1 pT = A z A t *  = - A &? - A,’A;* =- 

R -  1 + A ’  1 + A ’  

sin2 I, L. (5.10) 
(1 - A = -  

4b2 
where 

The form of PR and flT guarantees conservation of action. 
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FIQURE 8. Plane-wave approximation for the symmetric trench of figure 6: -, EFEM 

results; ---, plane-wave approximation (5.4) ; . . . . . -, action-baaed model (5.30). 

For the case of a single step discontinuity in depth and current, we may set h, = h, 
and V2 = V,. The general result (5.4) then reduces to 

These may be written as 

where 

(5.11) 

(5.12) 

(5.13) B I32  - Q1 I11 

a I12 Q2 I12 
Y =7-----* 

Plots of the plane-wave approximation for a symmetric and asymmetric trench are 
given in figures 8 and 9 in comparison with the full numerical (EFEM) results. KD1 
have already shown that the accuracy of the approximate solution decreases with 
increasing relative trench depth. The results in figures 8 and 9 indicate also that the 
approximation is less accurate for opposing currents ( F < 0 )  than for following 
currents (Zi' > 0). 

The solutions presented above may be developed in the deep-water limit by the 
revised choice 

fr, = ekiz. (5.14) 

The resulting integrals taken over the entire water depth are 

Itj = (k t+k , ) - l .  
Then we have 

(5.15) 



108 J .  T. Kirby, R. A. Dalrymple and S. N .  Seo 
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k, h, 
FIQURE 9. Plane-wave approximation for the asymmetric trench of figure 7 : -, EFEM 

results; ---, plane-wave approximation (5.4) ; . . . . * . , action-baaed model (5.30). 

The plane-wave solution for the case of a single vortex sheet (with properties in 
regions 2 and 3 taken to be equal) are given by (5.12) with 

The corresponding reflection and transmission coefficients are given by 

(5.17) 

(5.18) 

These deep-water results may be compared with the ‘action-based’ results of Smith 
(1983). (The general form of the action-based model for the trench will be considered 
in the following section.) Defining a parameter 6 (equal to Smith’s a), we get 

Smith’s results are given by 

6- 1 

(5.19) 

(5.20) 

A comparison of reflection and transmission coefficients for Smith’s model, the 
present deep-water plane-wave model and Evans’ (1 975) numerical results is given 
in figure 10. Each approximate model is a good predictor of transmission coefficient 
for waves entering a following stream ( V  > 0), and reflection and transmission 
coefficients for all models are essentially equivalent in the range I V/C,  I < 0.3, where 
C, is the free-wave speed (g /k , )k  (See Smith 1983 for a detailed plot of this region.) 
Neither approximate model performs well as a predictor of reflection by strong 
opposing currents, while Smith’s model is a better predictor of transmission in this 
C&8e. 
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FIGURE 10. Transmission and reflection coefficients for varying angle of incidence 8, and normalized 
current speed V/Co: single vortex sheet in deep water. (a) K T ;  ( b )  K,. - , Evans (1975) ; ---, 
Smith (1983); -.-, present plane-wave approximation. 

5.2. Action-based model for a trench 

Smith (1987) has extended the 'action-based' model to the case of a single 
discontinuity in depth and current. We first restate Smith's model for the single step 
in the present notation and then extend it to the case of the submerged trench. 

Referring back to (5.1) and (5.2), we replace the depth averages given there with 
some unspecified set of averages for the pressure equation, in the form 

a,(l+ 4) (A ,  o h  = c!2 A m , ,  o h .  (5.21) 

Smith suggests that the average be given by a r.m.8. weighting of each eigenmode 
over the shallower depth, to give 

(5.22) 
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(f2,,>: = sinh2k2h2-sinh2k2(h2-hl)+2k,hl 
Fl = 

sinh 2k, h, + 2k2 h2 
where 

We write the pressure and velocity matching then as 

I22 

y l ( i + A ~ )  =A:, 6,y1(l-A,) =A: 

A,  = 1. 6 -1 A+--.- 261 Y1 
S l + l ’  sl+l and obtain 

Using the requirement of action conservation (2.30) then gives 

1 cr2 6, = 2 2  Fl. 
12 4 

Turning to the case of a trench with depth h, in region 3, we define 

( f 2 ,  o x  

I 2 2  ’ 

(5.23) 

(5.24) 

(5.25a, b )  

(5.26) 

(5.27) 

(5.28) 

where the average is now over h, at 2 = L. Equations (5.1) and (5.2) are then posed 

(5.29a, b) 

(5.29c, d )  

as 
yl(l  +A;) = A:+ A,, 

6,y1(l-A;) = Ai-A, ,  

y3 Af eilst = A: eizrL+ A, e-izsL 

6,y3AC eizaL = A+ 2 eiz~L-AA-e-iznL. 2 

and 

These are solved aa in the previous section to obtain 

and 

261(Y1/Y3) e-izrL Af = 
(6, +a3) cos I ,  L-i( 1 + 6,8,) sin 1, L 

(6,-S1) cosZ2L-i(l-6163) sin1,L 
-(6,+6,) cosZ,L+i(l +S1S3) sin1,L’ 

A, = 

Forcing conservation of action then gives 

(5.30 a)  

(5.30 b)  

(5.31) 

and the same expression for 6, as given above. 
For the case of a symmetric trench, we may take 

8, = 6, = S, y1 = 7, = y, (5.32) 

The resulting expressions for Af and A; are given by (5.7) and (5.8) with 6 replacing 
b defined by (5.6). 

Results of the action model are included in figures 8 and 9 in comparison with the 
EFEM and ‘plane-wave ’ approximations. The deviation between the two approxi- 
mate solutions is small and generally less than the deviation between approximate 
and EFEM solutions, except in some areas where the three solutions are close. Only 
the portions of the curves for the action-based results that deviate from curves for 
the other models by more than the graphical resolution of the figures are plotted. 

Fl = F, = F. 
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A similar close correspondence between the plane-wave and action approximations 
is pointed out in one case by Smith (1987). The action-based approximation generally 
improves slightly in comparison with the plane-wave approximation as water depth 
increases. (Recall the deep-water results given above.) 

5.3. Variational approximation 
Since the action-based model does not provide a significant improvement over the 
plane-wave approximation for the intermediate-depth case studied above, we have 
further constructed a variational approximation following the original formulation 
of Miles (1967). Mei 6 Black (1969) have extended Miles' (1967) approach to the case 
of a symmetric obstacle, and Miles (1982) has followed their approach to study the 
scattering of obliquely incident waves by a symmetric trench (limited to case 1, freely 
propagating modes in the entire domain). On the other hand, Lassiter (1972) has 
considered the case of normal incidence on an asymmetric trench. Here, we generalize 
Miles' method to cover oblique incidence (with 1, and I ,  possibly imaginary), 
asymmetric geometry and the presence of currents. 

We proceed by specifying the horizontal velocity components divided by intrinsic 
frequency at x = 0 and L as Ul(z) and U,(z) respectively. Using (2.22) and employing 
orthogonality conditions leads to the equations 

(5.33 a )  

(5.33 b)  

(5.33 a) 

for the junction at x = 0, and similar equations for x = L with subscripts 1 replaced by 
3 and including the phase shifts to the 2 = L position. Here, the additional integrals 
are 

J d n )  = s" f t ,  n(z)Jf, nk) dz. (5.34) 
(hi ,  Wmin 

The resulting set of equations (5.334 and its counterpart at x = L may be used to 
solve for the B.$ ,, ; we obtain 

The explicit expressions for BLn, B?,, BCn may be used in the conditions for 
continuity of pressure (2.13 b) ; we obtain 
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for x = 0 and 
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a,(Ai eizpL+A; e-izpL)f2,0(z)-cr3(A: eiz3L+ A, e-i13L)f3,0(~) 

= lo 'l(f) G 3 1 ( z 9  6) df+$ u 3 ( f )  G32(z ,  6) df (5*36b) 
-h 1 -ha 

for x = L, where 
O3 4 f 2 ,  n ( 4 f 2 .  n ( f )  

'11 = 2 , A,, J2,(n) sinh A,, L ' ( 5 . 3 7 ~ )  

and where G,, = G,, and G,, is obtained from G,, by a change in subscript 1 to 3. 
We now expand U ,  and U, in terms of the linearly independent amplitudes: 

UlCf) = (Af + A X l ( f )  + + A,)P,,(f), (5.38a) 

U,( f )  = (A: eizaL+A; e-iz3L)P33(f)+ (A: eizrL+A; e - i z ~ L ) ~ 2 ( f )  (5.383) 

where thehj are unknown. Substituting (5.38) in (5.36), adding the two parts of (5.36) 
and collecting the coefficients of each independent pair of amplitudes produces the 
following integral equations: from x = 0, 

where G, = G,, + Gll. The integral equations define the unknown& We note that the 
kernels G, are symmetric in z and f .  The set of equations (5.39) are then convolved 
with each of the independent velocity components to obtain 

i = 1,  2; j = 1,2,  (5.40a) 

qj = J"_,. at ft, 0 ( z ) f 3 j ( z )  dz = ( - )' lo lo h ( f )  G3(z, f)&(z) df dz, 
-ha -h3 

i = 2, 3; j = 2, 3, (5.40b) 

where Sij and @, are the scattering-matrix elements for corresponding single-step 
problems posed at x = 0 and L. Note that Sij = -S;l for i + j, due to symmetry 
of the kernels. The S,, may be written as stationary variational integrals following 
Miles (1967), giving 

( - l Y - l ~ P , ~ h , f t , o z u  dzf f , , o P , r  dz 

Lhl J O h A t ( f )  %(Z, E)f i , (z)  df dz 

, i = 1,2;  j = 1,  2, (5.41a) -hi si, = 

( - l Y a $ a j l h f i , O &  dzr f j , O f 3 #  dz 
, i = 2, 3; j = 2, 3. (5.41b) 4 3  s;, = 
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F = O  F = - 0.0525 F = 0.0525 

N 
1 
3 
5 
7 
9 

15 
% ET 

KR 
0.940003 
0.941 636 
0.942039 
0.942090 
0.942 122 
0.942 165 
0.082 

KT 

0.341 166 
0.336 631 
0.335503 
0.335360 
0.335271 
0.335 149 

-0.644 

KR 
0.591 586 
0.590768 
0.590 5 15 
0.590485 
0.590466 
0.590438 
2.074 

KT 

0.806242 
0.806842 
0.807026 
0.807049 
0.807063 
0.807083 

- 1.059 

KE 
0.989332 
0.989665 
0.989737 
0.989 747 
0.989 753 
0.989761 
0.005 

KT 

0.145678 
0.143399 
0.142900 
0.142832 
0.142 790 
0.142 734 

-0.235 

TABLE 2. Convergence of the variational approximation with increaaing N: h,/h = 3, L/h, = 10, 
k, h, = 0.68034 

t Percent error in the 15-term variational solution compared with the 50-term EFEM result. 

Substituting these results back into (5.33) for the propagating modes gives, finally, 
the 4 x 4 matrix equation for A;, A$ and A:, where we have set Af = 1 and A; = 0 
to represent waves incident from 2 = - 00 left only: 

(5.42) 
This matrix may be inverted, after determination of the Sf,, to give the unknown 
propagating wave amplitudes. In  order to evaluate the S , ,  we choose to represent 
the velocities a t  each junction by the eigenfunction for the propagating wave mode 
on the shallower side, following Miles (1967) (see also Smith 1987). We thus take 

A&) = c:fi, O M ,  i = 1,2  ; f s r ( 4  = q f a ,  O ( d ,  i = 2,3. (5.43) 

These are substituted into (5.41), leading to immediate cancellation of the scale 
factors C due to the scale invariance of the variational forms. The S,, are then 
evaluated after choosing the number of non-propagated modes to retain in truncating 
the infinite sums to a finite number N of terms. 

Numerical tests of convergence of the variational approximation for increasing N 
are given in table 2, for comparison with EFEM results in table 1. For the relatively 
small depth changes investigated here, convergence of the variational method is quite 
rapid, with N = 5 being sufficient to obtain three-decimal-place convergence. (A 
similar convergence criterion applied to the EFEM results indicates that up to m 16 
modes are required.) Table 2 also gives percent error in the final N = 15 results for 
the variational approximation in comparison with the N = 50 EFEM results. As in 
the previous two approximate solutions, the greatest deviations between the 
variational and (presumably more exact) EFEM solutions occur in cases of strong 
opposing (P < 0)  currents in the trench. However, variational solutions (even for 
N = 1) are significantly closer to EFEM results than either of the propagating-mode 
approximations for the entire range of parameters studied. Indeed, the EFEM and 
variational results are graphically indistinguishable for most of the plotted cases in 
figures 8 and 9 and thus no additional plots are given. 
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1 T 7 - F  
F =  0.5 0.3 0.1 

0 4 8 12 16 20 
k, L 

FIGWRE 11. Effect of current along the trench on the reflection coefficient KR in shallow water: 
h,/h, = 2, 8, = 45”. Curves for varying F = V,/(gh,)a. 

6. Long-wave asymptote 
For the case of kh 4 1 in all regions, the plane-wave solution and the ‘action-based’ 

model presented above are asymptotic to the same results. The integrals and 
coefficients in the plane-wave theory reduce to 

I, ,  = I, ,  = h,, 13, = 133 = h,, I,, = h, (6.1) 

and 

For the single vortex sheet with possible change in depth, we obtain the result (5.12) 
or (5.26) with 

The results are equivalent to the results in Kirby (1986, equations (3.12) and (3.13)), 
where solutions were obtained by matching volume fluxes following the wave- 
distorted vortex sheet, based on Lamb’s (1945) hypothesis. The results for a 
symmetric trench also follow directly from (5.7) and (5.10) with b given by (6.3). 
Mei & Lo (1984, see corrections 1986) have presented results for a current jet 
alone (h, = h, = h3). Several plots of results for varying geometry are given in figures 
11-13. Figure 11 indicates the effect of varying current speed on reflection for a fixed 
boundary geometry, and shows the tendency for opposing currents to reduce 
reflection by causing Case 1 behaviour in the trench, while for the incident-wave 
direction and trench configuration considered, following currents all lead to Case 3 
behaviour in the trench. Figure 12 shows the effect of increasing trench depth while 
holding current speed fixed, with deeper trenches leading to more reflection. Finally, 
figure 13 shows the tendency towards increased reflection with increasing angle of 
incidence, both for following and opposing currents. 
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0 4 8 12 16 20 

kl L 
FIQURE 12. Effect of varying trench depth on reflection coefficient K, in shallow water: 

el = 60". -, opposing current F = -0.3; ---, following current F = 0.3. 

0 4 8 12 16 20 
kl L 

FIQURE 13. Effect of varying angle of incidence on reflection coefficient KR in shallow water: 
h,/h, = 3. -, opposing current F = -0.3; --- following current F = 0.3. 

7. Conclusions 
A method has been developed, based on matched eigenfunction expansions, to 

study the diffraction of waves by a combination of vortex sheets and depth 
discontinuities in fmite water depth. The eigenfunction method (EFEM) haa been 
verified using a boundary-integral-equation method (BIEM). 

Approximate solutions b m d  on truncation of the EFEM solution to its plane-wave 
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components, and on an application of Smith’s (1983) depth-averaging procedure, 
have been developed and are seen to differ only slightly from each other, while 
deviations between either propagating-mode approximation and the EFEM solution 
may be significant over the range of parameters studied. On the other hand, a 
variational approximation following Miles (1967) is seen to converge quite rapidly 
and gives results in reasonable agreement with the EFEM method. In terms of 
computational efficiency and relative accuracy of approximate solutions, the varia- 
tional method is the strongly preferred of the methods investigated here. 

The shallow-water limit of the approximate solutions are investigated and are 
shown to  correspond with the previous results of Kirby (1986). 

The numerical results plotted here indicate that the behaviour of waves in the 
vicinity of submerged trenches or channels in coastal water is likely to be extremely 
sensitive to even fairly minor variations in flow regime (specifically, to the variation 
in tidal discharge velocity). It thus seems evident that any modelling effort designed 
to evaluate wave action in navigation channels, or the effect of such channels on 
neighbouring regions, should include the possible influence of even small mean water 
motions in the channel due to tidal activity or steady discharge flows. 
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